Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998363

RESUMO

Iron homeostasis is considered a key factor in human metabolism, and abrogation in the system could create adverse effects, including cancer. Moreover, 6-gingerol is a widely used bioactive phenolic compound with anticancer activity, and studies on its exact mechanisms on non-small cell lung cancer (NSCLC) cells are still undergoing. This study aimed to find the mechanism of cell death induction by 6-gingerol in NSCLC cells. Western blotting, real-time polymerase chain reaction, and flow cytometry were used for molecular signaling studies, and invasion and tumorsphere formation assay were also used with comet assay for cellular processes. Our results show that 6-gingerol inhibited cancer cell proliferation and induced DNA damage response, cell cycle arrest, and apoptosis in NSCLC cells, and cell death induction was found to be the mitochondrial-dependent intrinsic apoptosis pathway. The role of iron homeostasis in the cell death induction of 6-gingerol was also investigated, and iron metabolism played a vital role in the anticancer ability of 6-gingerol by downregulating EGFR/JAK2/STAT5b signaling or upregulating p53 and downregulating PD-L1 expression. Also, 6-gingerol induced miR-34a and miR-200c expression, which may indicate regulation of PD-L1 expression by 6-gingerol. These results suggest that 6-gingerol could be a candidate drug against NSCLC cells and that 6-gingerol could play a vital role in cancer immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Ferro
2.
Curr Issues Mol Biol ; 45(3): 2157-2169, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975508

RESUMO

The skin is the most voluminous organ of the human body and is exposed to the outer environment. Such exposed skin suffers from the effects of various intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, and skin pigmentation. Skin pigmentation occurs in skin aging and is caused by hyper-melanogenesis and oxidative stress. Protocatechuic acid (PCA) is a natural secondary metabolite from a plant-based source widely used as a cosmetic ingredient. We chemically designed and synthesized PCA derivatives conjugated with alkyl esters to develop effective chemicals that have skin-whitening and antioxidant effects and enhance the pharmacological activities of PCA. We identified that melanin biosynthesis in B16 melanoma cells treated with alpha-melanocyte-stimulating hormone (α-MSH) is decreased by PCA derivatives. We also found that PCA derivatives effectively have antioxidant effects in HS68 fibroblast cells. In this study, we suggest that our PCA derivatives are potent ingredients for developing cosmetics with skin-whitening and antioxidant effects.

3.
Life Sci ; 301: 120619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561750

RESUMO

AIMS: In biology and medicine, hypoxia refers to reduced oxygen tension or oxygen starvation resulting from various environmental or pathological conditions. Prolonged hypoxia may lead to an imbalance in protein production and a loss of muscle mass in animals. The physiological response to hypoxia includes oxidative stress-induced activation of complex cell-signaling networks such as hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK-STAT). Methylsulfonylmethane (MSM) is a natural sulfur compound that regulates HIF-1α expression and provides cytoprotection from oxidative stress. In this study, we explored the anti-hypoxic activity and cytoprotective effect of MSM in cobalt chloride (CoCl2)-induced hypoxic C2C12 mouse myoblast culture. MATERIALS AND METHODS: We used western blotting, real time PCR, flow cytometry for molecular signaling studies and we also used MTT assay and ChIP assay along with comet assay for cellular processes. KEY FINDINGS: MSM prevented the CoCl2 induced cytotoxicity. Molecular markers of hypoxia, induced by CoCl2, were normalized or reduced by MSM, which also inhibited the effect of CoCl2-induced JAK2/STAT5b/Cyclin D1 and PI3K/AKT signaling. CoCl2-induced oxidative stress results in activation of the NRF2/HO-1-mediated cell survival pathway and inhibition of DNA repair, both of which were prevented by MSM. SIGNIFICANCE: We suggest MSM can be considered as a candidate drug for reducing the effects of hypoxia in both animals and humans.


Assuntos
Cloretos , Fosfatidilinositol 3-Quinases , Animais , Hipóxia Celular , Cloretos/farmacologia , Cobalto/metabolismo , Dimetil Sulfóxido , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Mioblastos/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sulfonas
4.
J Oncol ; 2022: 6737248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222644

RESUMO

Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.

5.
Front Oncol ; 11: 781720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804985

RESUMO

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSCs with natural compounds is a promising approach as it suppresses cancer recurrence with fewer adverse effects. 6-Gingerol is an active component of ginger, which exhibits well-known anti-cancer activities. This study determined the mechanistic aspects of cell death induction by 6-gingerol. To analyze cellular processes, we used Western blot and real-time qPCR for molecular signaling studies and conducted flow cytometry. Our results suggested an inhibition of CSC marker expression and Wnt/ß-catenin signaling by 6-gingerol in NCCIT and NTERA-2 cells. 6-Gingerol induced reactive oxygen species generation, the DNA damage response, cell cycle arrest, and the intrinsic pathway of apoptosis in embryonic CSCs. Furthermore, 6-gingerol inhibited iron metabolism and induced PTEN, which both played vital roles in the induction of cell death. The activation of PTEN resulted in the inhibition of PD-L1 expression through PI3K/AKT/p53 signaling. The induction of PTEN also mediated the downregulation of microRNAs miR-20b, miR-21, and miR-130b to result in PD-L1 suppression by 6-gingerol. Hence, 6-gingerol may be a promising candidate to target CSCs by regulating PTEN-mediated PD-L1 expression.

6.
Cells ; 10(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831070

RESUMO

Embryonic cancer stem cells (CSCs) can differentiate into any cancer type. Targeting CSC using natural compounds is a good approach as it suppresses cancer recurrence with fewer adverse effects, and methylsulfonylmethane (MSM) is a sulfur-containing compound with well-known anticancer activities. This study determined the mechanistic aspects of the anticancer activity of MSM. We used Western blotting and real-time qPCR for molecular signaling studies and conducted flow cytometry for analyzing the processes in cells. Our results suggested an inhibition in the expression of CSC markers and Wnt/ß-catenin signaling. MSM induced TRAIL-mediated extrinsic apoptosis in NCCIT and NTERA-2 cells rather than an intrinsic pathway. Inhibition of iron metabolism-dependent reactive oxygen species (ROS) generation takes part in TRAIL-mediated apoptosis induction by MSM. Suppressing iron metabolism by MSM also regulated p38/p53/ERK signaling and microRNA expressions, such as upregulating miR-130a and downregulating miR-221 and miR-222, which resulted in TRAIL induction and thereby extrinsic pathway of apoptosis. Hence, MSM could be a good candidate for neoadjuvant therapy by targeting CSCs by inhibiting iron metabolism.


Assuntos
Apoptose , Dimetil Sulfóxido/farmacologia , Células-Tronco de Carcinoma Embrionário/patologia , Ferro/metabolismo , Sulfonas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Cells ; 10(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34685529

RESUMO

Iron metabolism and heme biosynthesis are essential processes in cells during the energy cycle. Alteration in these processes could create an inflammatory condition, which results in tumorigenesis. Studies are conducted on the exact role of iron/heme metabolism in induced inflammatory conditions. This study used lipopolysaccharide (LPS)- or high-glucose-induced inflammation conditions in THP-1 cells to study how iron/heme metabolism participates in inflammatory responses. Here, we used iron and heme assays for measuring total iron and heme. We also used flow cytometry and Western blotting to analyze molecular responses. Our results demonstrated that adding LPS or high-glucose induced iron formation and heme synthesis and elevated the expression levels of proteins responsible for iron metabolism and heme synthesis. We then found that further addition of heme or 5-aminolevulinic acid (ALA) increased heme biosynthesis and promoted inflammatory responses by upregulating TLR4/NF-κB and inflammatory cytokine expressions. We also demonstrated the inhibition of heme synthesis using succinylacetone (SA). Moreover, N-MMP inhibited LPS- or high-glucose-induced inflammatory responses by inhibiting TLR4/NF-κB signaling. Hence, iron/heme metabolism checkpoints could be considered a target for treating inflammatory conditions.


Assuntos
Inflamação/metabolismo , Ferro/metabolismo , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
8.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576006

RESUMO

Tumor immune escape is a common process in the tumorigenesis of non-small cell lung cancer (NSCLC) cells where programmed death ligand-1 (PD-L1) expression, playing a vital role in immunosuppression activity. Additionally, epidermal growth factor receptor (EGFR) phosphorylation activates Janus kinase-2 (JAK2) and signal transduction, thus activating transcription 3 (STAT3) to results in the regulation of PD-L1 expression. Chemotherapy with commercially available drugs against NSCLC has struggled in the prospect of adverse effects. Nobiletin is a natural flavonoid isolated from the citrus peel that exhibits anti-cancer activity. Here, we demonstrated the role of nobiletin in evasion of immunosuppression in NSCLC cells by Western blotting and real-time polymerase chain reaction methods for molecular signaling analysis supported by gene silencing and specific inhibitors. From the results, we found that nobiletin inhibited PD-L1 expression through EGFR/JAK2/STAT3 signaling. We also demonstrated that nobiletin exhibited p53-independent PD-L1 suppression, and that miR-197 regulates the expression of STAT3 and PD-L1, thereby enhancing anti-tumor immunity. Further, we evaluated the combination ability of nobiletin with an anti-PD-1 monoclonal antibody in NSCLC co-culture with peripheral blood mononuclear cells. Similarly, we found that nobiletin assisted the induction of PD-1/PD-L1 blockade, which is a key factor for the immune escape mechanism. Altogether, we propose nobiletin as a modulator of tumor microenvironment for cancer immunotherapy.


Assuntos
Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Flavonas/farmacologia , Neoplasias Pulmonares/imunologia , MicroRNAs/imunologia , Proteínas de Neoplasias/imunologia , RNA Neoplásico/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transdução de Sinais/imunologia
9.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209829

RESUMO

Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.


Assuntos
Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Neoplasias Pulmonares/patologia , Silibina/farmacologia , Esferoides Celulares/patologia , Apoptose/efeitos dos fármacos , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Esferoides Celulares/efeitos dos fármacos
10.
Life (Basel) ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068523

RESUMO

Lipopolysaccharide (LPS)-induced inflammatory response leads to serious damage, up to and including tumorigenesis. Natural mineral sulfur, non-toxic sulfur (NTS), and methylsulfonylmethane (MSM) have anti-inflammatory activity that may inhibit LPS-induced inflammation. We hypothesized that sulfur compounds could inhibit LPS-induced inflammatory responses in CCD-986Sk skin fibroblasts. We used Western blotting and real-time PCR to analyze molecular signaling in treated and untreated cultures. We also used flow cytometry for cell surface receptor analysis, comet assays to evaluate DNA damage, and ELISA-based cytokine detection. LPS induced TLR4 activation and NF-κB signaling via canonical and protein kinase C (PKC)-dependent pathways, while NTS and MSM downregulated that response. NTS and MSM also inhibited LPS-induced nuclear accumulation and binding of NF-κB to proinflammatory cytokines COX-2, IL-1ß, and IL-6. Finally, the sulfur compounds suppressed LPS-induced ROS accumulation and DNA damage in CCD-986Sk cells. These results suggest that natural sulfur compounds could be used to treat inflammation and may be useful in the development of cosmetics.

11.
Exp Mol Med ; 53(5): 723-736, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953325

RESUMO

The innate immune system is the first line of the host defense program against pathogens and harmful substances. Antiviral innate immune responses can be triggered by multiple cellular receptors sensing viral components. The activated innate immune system produces interferons (IFNs) and cytokines that perform antiviral functions to eliminate invading viruses. Coronaviruses are single-stranded, positive-sense RNA viruses that have a broad range of animal hosts. Coronaviruses have evolved multiple means to evade host antiviral immune responses. Successful immune evasion by coronaviruses may enable the viruses to adapt to multiple species of host organisms. Coronavirus transmission from zoonotic hosts to humans has caused serious illnesses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease-2019 (COVID-19), resulting in global health and economic crises. In this review, we summarize the current knowledge of the mechanisms underlying host sensing of and innate immune responses against coronavirus invasion, as well as host immune evasion strategies of coronaviruses.


Assuntos
Coronaviridae/imunologia , Infecções por Coronavirus/imunologia , Evasão da Resposta Imune , Imunidade Inata , Animais , COVID-19/imunologia , Humanos , Interferons/imunologia , SARS-CoV-2/imunologia
12.
Mol Med Rep ; 24(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33907855

RESUMO

Janus kinase 2 (JAK2) and STAT3 signaling is considered a major pathway in lipopolysaccharide (LPS)­induced inflammation. Toll­like receptor 4 (TLR­4) is an inflammatory response receptor that activates JAK2 during inflammation. STAT3 is a transcription factor for the pro­inflammatory cytokine IL­6 in inflammation. Sulfur is an essential element in the amino acids and is required for growth and development. Non­toxic sulfur (NTS) can be used in livestock feeds as it lacks toxicity. The present study aimed to inhibit LPS­induced inflammation in C2C12 myoblasts using NTS by regulating TLR­4 and JAK2/STAT3 signaling via the modulation of IL­6. The 3­(4,5­dimethylthiazol­2­yl)­2,5­diphenyltetrazolium bromide assay was conducted to analyze cell viability and reverse transcription polymerase chain reaction and western blotting performed to measure mRNA and protein expression levels. Chromatin immunoprecipitation and enzyme­linked immunosorbent assays were used to determine the binding activity of proteins. The results indicated that NTS demonstrated a protective effect against LPS­induced cell death and inhibited LPS­induced expression of TLR­4, JAK2, STAT3 and IL­6. In addition, NTS inhibited the expression of nuclear phosphorylated­STAT3 and its binding to the IL­6 promoter. Therefore, NTS may be a potential candidate drug for the treatment of inflammation.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Lipopolissacarídeos/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Enxofre/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Janus Quinase 2/genética , Camundongos , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética
13.
Biomedicines ; 9(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805840

RESUMO

Targeted therapy based on natural compounds is one of the best approaches against non-small cell lung cancer. Ursolic acid (UA), a pentacyclic triterpenoid derived from medicinal herbs, has anticancer activity. Studies on the molecular mechanism underlying UA's anticancer activity are ongoing. Here, we demonstrated UA's anticancer activity and the underlying signaling mechanisms. We used Western blotting and real-time quantitative polymerase chain reaction for molecular signaling analysis. We also used in vitro angiogenesis, wound healing, and invasion assays to study UA's anticancer activity. In addition, we used tumorsphere formation and chromatin immunoprecipitation assays for binding studies. The results showed that UA inhibited the proliferation of A549 and H460 cells in a concentration-dependent manner. UA exerted anticancer effects by inducing G0/G1 cell cycle arrest and apoptosis. It also inhibited tumor angiogenesis, migration, invasion, and tumorsphere formation. The molecular mechanism underlying UA activity involves UA's binding to epidermal growth factor receptor (EGFR), reducing the level of phospho-EGFR, and thus inhibiting the downstream JAK2/STAT3 pathway. Furthermore, UA reduced the expressions of vascular endothelial growth factor (VEGF), metalloproteinases (MMPs) and programmed death ligand-1 (PD-L1), as well as the formation of STAT3/MMP2 and STAT3/PD-L1 complexes. Altogether, UA exhibits anticancer activities by inhibiting MMP2 and PD-L1 expression through EGFR/JAK2/STAT3 signaling.

14.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925065

RESUMO

Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Catecóis/farmacologia , Álcoois Graxos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Receptores ErbB/metabolismo , Feminino , Zingiber officinale/química , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53/metabolismo , Quinases da Família src/metabolismo
15.
Asian-Australas J Anim Sci ; 34(1): 134-142, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31011008

RESUMO

Objective: To understand the athletic characteristics of Thoroughbreds, high-throughput analysis has been conducted using horse muscle tissue. However, an in vitro system has been lacking for studying and validating genes from in silico data. The aim of this study is to validate genes from differentially expressed genes (DEGs) of our previous RNA-sequencing data in vitro. Also, we investigated the effects of exercise-induced stress including heat, oxidative, hypoxic and cortisol stress on horse skeletal muscle derived cells with the top six upregulated genes of DEGs. Methods: Enriched pathway analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool with upregulated genes in horse skeletal muscle tissue after exercise. Among the candidates, the top six genes were analysed through geneMANIA to investigate gene networks. Muscle cells derived from neonatal horse skeletal tissue were maintained and subjected to exercise-related stressors. Transcriptional changes in the top six genes followed by stressors were investigated using qRT-PCR. Results: The inflammation response pathway was the most commonly upregulated pathway after horse exercise. Under non-cytotoxic conditions of exercise-related stressors, the transcriptional response of the top six genes was different among types of stress. Oxidative stress yielded the most similar expression pattern to DEGs. Conclusion: Our results indicate that transcriptional change after horse exercise in skeletal muscle tissue strongly relates to stress response. qRT-PCR results showed that stressors contribute differently to the transcriptional regulation. These results would be valuable information to understand horse exercise in the stress aspect.

16.
Curr Pharm Biotechnol ; 22(11): 1404-1411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33213312

RESUMO

BACKGROUND: γ-Poly-Glutamic Acid (γ-PGA) is a naturally occurring homo-polyamide produced by various strains of Bacillus. It is made from repeating units of L-glutamic acid, D-glutamic acid, or both connected through amide linkages between α-amino and γ-carboxylic acid groups. As a biopolymer substance, the attractive properties of γ-PGA are that it is water-soluble, biodegradable, biocompatible, non-toxic, non-immunogenic, and edible. Therefore, it can be used as a green and environmentally friendly biological material. METHODS: The review concentrates on the reports revealing the functions and potential use of γ-PGA and its derivatives in medicine. RESULTS & DISCUSSION: γ-PGA is described to possess several properties that may be exploited in medicine. The biopolymer reportedly has been successfully applied not only as a metal chelator, drug carrier/ deliverer, and gene vector, but also used safely as a vaccine adjuvant, tissue engineering material, and contrast agent. CONCLUSION: γ-PGA could be potentially considered as a potential biomedical material in the field of medicine.


Assuntos
Ácido Glutâmico , Ácido Poliglutâmico , Adjuvantes Imunológicos , Biopolímeros , Portadores de Fármacos
17.
Anticancer Res ; 40(9): 5191-5200, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878807

RESUMO

BACKGROUND/AIM: Colorectal cancer is one of the most common malignancies worldwide. Small molecule-based chemotherapy is an attractive approach for the chemoprevention and treatment of colorectal cancer. Methylsulfonylmethane (MSM) is a natural organosulfur compound with anticancer properties, as revealed by studies on in vitro models of gingival, prostate, lung, hepatic, and breast cancer. However, the molecular mechanisms underlying the effects of MSM in colon cancer cells remain unclear. MATERIALS AND METHODS: Here, we investigated the effects of MSM, especially on the cell cycle arrest and apoptosis, in HT-29 cells. RESULTS: MSM suppressed the viability of HT-29 cells by inducing apoptosis and cell cycle arrest at the G0/G1 phase. MSM suppressed the sphere-forming ability and expression of stemness markers in HT-29 cells. CONCLUSION: MSM has anti-cancer effects on HT-29 cells, and induces cell cycle arrest and apoptosis, while suppressing the stemness potential.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Sulfonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas
18.
Anticancer Res ; 40(6): 3209-3220, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32487615

RESUMO

BACKGROUND/AIM: Non-small cell lung cancer (NSCLC) is one among the most common cancers worldwide. Recently, dietary phytochemicals have been reported as an attractive approach to improve the symptoms of NSCLC patients. Tannic acid is a natural polyphenol, which is known to have anticancer effects on in vitro models of breast, gingival and colon cancer. However, the molecular mechanisms associated with the actions of tannic acid on A549 human lung cancer cells have not been elucidated. MATERIALS AND METHODS: In this study, we analyzed the effect of tannic acid on A549 cells and their underlying mechanisms using western blotting, flow cytometry, invasion assay and tumorsphere formation assay. RESULTS: Tannic acid treatment suppressed the viability of A549 cells through cell cycle arrest and induction of the intrinsic pathways of apoptosis. In addition, the various malignant phenotypes of A549 cells including invasion, migration, and stemness were inhibited by tannic acid treatment. CONCLUSION: Tannic acid could be used as an effective inhibitor of lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Taninos/uso terapêutico , Células A549 , Apoptose , Linhagem Celular Tumoral , Humanos , Transdução de Sinais , Taninos/farmacologia
19.
Molecules ; 25(10)2020 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429534

RESUMO

High glucose-induced inflammation leads to atherosclerosis, which is considered a major cause of death in type 1 and type 2 diabetic patients. Nuclear factor-kappa B (NF-κB) plays a central role in high glucose-induced inflammation and is activated through toll-like receptors (TLRs) as well as canonical and protein kinase C-dependent (PKC) pathways. Non-toxic sulfur (NTS) and methylsulfonylmethane (MSM) are two sulfur-containing natural compounds that can induce anti-inflammation. Using Western blotting, real-time polymerase chain reaction, and flow cytometry, we found that high glucose-induced inflammation occurs through activation of TLRs. An effect of NTS and MSM on canonical and PKC-dependent NF-κB pathways was also demonstrated by western blotting. The effects of proinflammatory cytokines were investigated using a chromatin immunoprecipitation assay and enzyme-linked immunosorbent assay. Our results showed inhibition of the glucose-induced expression of TLR2 and TLR4 by NTS and MSM. These sulfur compounds also inhibited NF-κB activity through reactive oxygen species (ROS)-mediated canonical and PKC-dependent pathways. Finally, NTS and MSM inhibited the high glucose-induced expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α and binding of NF-κB protein to the DNA of proinflammatory cytokines. Together, these results suggest that NTS and MSM may be potential drug candidates for anti-inflammation therapy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Dimetil Sulfóxido/farmacologia , Glucose/farmacologia , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Regulação da Expressão Gênica , Humanos , Inflamação/prevenção & controle , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Manitol/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Células THP-1 , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Anticancer Res ; 40(4): 1905-1913, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32234879

RESUMO

BACKGROUND/AIM: Methylsulfonylmethane (MSM) is a natural organic compound that displays anti-inflammatory as well as antioxidant properties. MSM reportedly has potential in inhibition of tumor cells. However, molecular mechanisms underlying the effects of MSM on lung cancer remain unclear. MATERIALS AND METHODS: In this study, the effect of MSM on A549 cells was examined. We focused on the mode of apoptosis induced by MSM and investigated alterations in the integrity of the outer membrane of mitochondria. RESULTS: Our results showed that MSM inhibited viability of A549 cells and changed the shape and permeability of nuclei. In addition, MSM induced G2/M arrest. MSM reduced the mitochondrial membrane potential and contributed to release of cytochrome c from mitochondria to cytoplasm. CONCLUSION: MSM is a potential anticancer agent for the treatment of lung cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Sulfonas/farmacologia , Células A549 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...